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Abstract. For a rational function with Herman rings, we define a tree and a piece-wise
linear map on it, which reflect the configuration of the Herman rings. Their properties
are investigated and some examples are given. Moreover, it is possible to define a
similar tree associated with (super)attractive basins or Siegel disks.

0. Introduction
We are concerned with the dynamics of rational functions on the Riemann sphere
C = Cu{oo} (see [B], for a review). Douady and Hubbard [DH] described the
dynamics of polynomials with connected and locally connected Julia sets, in terms
of so-called Hubbard's trees. However, if the Julia set Jf of a rational function / is
disconnected, then the complement C-Jf divides Jf into an infinite number of
connected components in a complicated manner. The aim of this paper is to propose
a new kind of trees which reflect this situation, for rational functions with Herman
rings. This construction of the tree can be generalized to rational functions with
(super)attractive basins or Siegel disks.

A Herman ring of period p of a rational function / is a connected component A
of C - Jf such that f(A) = A, f(A)nA = 0(O<j<p) and f on A is conformally
conjugate to an irrational rotation z -* e2mez on a concentric annulus {zeC\r< \z\ < 1}
with 0 < r < 1 and 6 e R - Q. (see [D, H].) Let y be an oriented simple closed curve
in A corresponding to {zeC||z| = r'} (r< r '< 1). Then y^ =f~l(y) 0 = 1,...,/») are
invariant curves in the sense that f(yj) = yj+x (j = 1 , . . . , p-1), f(yp) = yx and that
/ respects their orientations.

If p a 2, there naturally arises the problem of the configuration of yj or rather of
the Herman rings. Here, a configurations means a cyclically ordered collection of
disjoint, oriented simple closed curves on C, up to orientation preserving homeo-
morphism of C and simultaneous change of orientations of all curves. Let us see
simple examples.

In the case of p = 2, there are two possibilities which are indicated in figure 1.
In the case of p = 3, there still are two possibilities, even if one does not take into

account the cyclic order and the orientation of yt (see figure 2).
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FIGURE 1

FIGURE 2

The tree 7}, which will be denned in § 3, describes the configuration of Herman
rings and their pre-images, and also involves some quantitative information, such
as the moduli of the rings. An induced map/.,, on 7} roughly describes the dynamics
of/ Furthermore, it turns out that/^ has some remarkable features: /* is piece-wise
linear (with respect to a certain metric) and its derivatives are positive integers.
Hence, it is considerably easier to deal with (7},/*) than (€, /) itself.

Moreover, the converse process is possible in many cases, i.e. one can construct
a rational function, by means of surgery developed in [SI], from a given tree with
these properties and satisfying certain conditions. We call this the realization problem,
where we say a rational function / realizes a pair (T, F) of a tree and a map, if
(?/,/*) is conjugate to (T, F) by an isometry. The realization problem will be
discussed in another paper [S2]. In addition, there is a formula which gives a lower
bound on the degree of rational functions realizing (T, F).

We proceed as follows. In § 1, we review well-known facts about annuli (Lemma
1.3) and prepare some notations. In § 2, we propose an abstract construction of a
tree from a collection of annuli satisfying the Condition (*), although the proofs
of the statements are postponed until § 7. We define, in § 3, the tree 7} and the map
/„, associated with the configuration of Herman rings of / Their basic properties
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are examined also in § 3. Stated in § 4 are some consequences of the basic properties.
In § 5, examples of the trees satisfying the basic properties are given. We discuss
in § 6 how we can generalize the construction of the tree, for example, to rational
functions with (super)attractive basins or Siegel disks.

1. Annulus
In the following, we shall say simply 'components' instead of 'connected com-
ponents'.

Definition 1.1. A connected open set A<=C is called an annulus, if Ac -C-A has
exactly two components, neither of which is a point.

Definition 1.2. Let X and V be subsets (or points) of C and A an annulus (resp. y
a simple closed curve in C). We say that A (resp. y) separates X and Y, if one
component of Ac (resp. yc) contains X and the other V.

We also say that A (resp. y) separates a single set X, if X intersects both
components of Ac (resp. yc).

LEMMA 1.3. Let A be an annulus.
(i) There exists an r—rA with 0 < r < l and a conformal mapping <f> = <j>A:A-+

{zeC|r< |z |< l} .
(ii) If <t>x: A -* {r' < \z\ < 1} is another conformal mapping, then r=r' and <f>x = c* or

cr/(f>, where c is a constant with \c\ = 1. Hence the rA is uniquely determined.

See [Al] for the proof. From now on, <f>A and rA always denote those as above.

DEFINITION 1.4. The modulus of an annulus A is

m{A)=-— log rA.

As a convention, we define m(<t>) = 0, for the empty </>.

Definition 1.5. Let A be an annulus. Define

\<t>A{z)\}) for zeA,

A(x, y) = {z e A \ A[z] separates x and y}.

The following two lemmas can be readily proved using Lemma 1.3.

LEMMA 1.6. (i) In the above definition, A[z] hence A(x, y) do not depend on the
choice of<f>A. For z e A, A[z] is a simple closed curve in A containing z and separating
dA. A(x, y) is either empty or an annulus separating x and y.

(ii) m(A(x, y)) = the length of

LEMMA 1.7. Let f:A^ A2 be an analytic covering map of annuli of degree d. Then
d• m(Ax) = m(A2) and <f>A2(f(z)) = (4>Al(z)}d, for suitable choice of <f>A.. Hence

z}) = A2[f(z)]forz€A1.
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LEMMA 1.8. (The Composition Law.) Let A, (i = 1,2,...) be disjoint annuli contained
in an annulus A. Suppose each At separates Ac. Then

See [A2] for the proof. This inequality follows from the principle of extremal
length. In fact, one can prove it using the equality

m(A) = inf p2 dxdy,

where the infimum is over Borel measurable functions p(z) > 0 satisfying \y p\dz\ > 1
for any locally rectifiable closed curve y separating dA.

2. Abstract tree
All the statements in this section will be proved in § 7.

Let si be a collection of disjoint annuli in C. Throughout this section (except
(2.10)), we assume the following Condition (*).

CONDITION (*). There exist a non-empty closed set B c C such that:
B consists of a finite number of connected components B,,..., BN, none of which

is a point;
Each Ae si is disjoint with B and separates B. {i.e., A separates Bt and Bjfor some

i, j.) Let

r = T(si) = {A[z]\Aesi,zeA},

U^= U A
Aesl

In the following, A, At (resp. y, yt,...) always denote elements of si (resp. F). We
are going to define a tree T{si).

Definition 2.1. For x, yeC,

d{x,y)= I m(A(x,y)).

LEMMA 2.2. Y^A^M m(A) < oo. Hence d(x, y) < oo, for any x, y.

LEMMA 2.3.

d(x,x) = 0, d{x,y) = d(y,x),

LEMMA 2.4. d{ •, •) is continuous on C x C.

Definition 2.5. Let us define ~st, T(s4), ir and d as follows:

x—^y for x, yeC if and only if d(x, y) =0;

TT:C-» r(.s#) is the natural projection. For x, yeT(si), d(x,y) = d(x,y), where
xe ir~1(x),ye TT~1{y). We call T{s4) the tree associated with the configuration si.
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Concerning these definitions, the following lemma can be proved without difficulty
using Lemmas 2.3 and 2.4.

LEMMA 2.6. The relation ~sa is an equivalence relation, hence T(si) is well-defined.
The d(-, •) is also well-defined and is a metric on T(M). Furthermore, the quotient
topology on T(si) is equivalent to the topology defined by d.

Definition 2.7. A tree is a one-dimensional (finite) simplicial complex which is
connected and contains no loop (i.e. is simply connected). Let T be a tree. For
xe T, a component of T-{x} is called a branch at x, and 93* denotes the set of
branches at x. A point x is an end point if #S8X = 1, branch point if #53X>3. An arc
is a subset homeomorphic to a closed interval. Its interior and end points, correspond-
ing to those of the interval, are denoted by int L, dL for the arc L. A metric on T
is called linear, if every arc in T is isometric to an interval with the standard metric.
This is equivalent to the following: if y is on an arc joining x and z, then d(x, z) =
d(x,y) + d(y,z).

As for the T{sl) defined in Definition 2.5, we have:

THEOREM 2.8. (a) If si is a collection of disjoint annuli satisfying the Condition (*),
then
(a) T{sl) is a tree.
(/3) d(- ,•) on T{si) is a linear metric.
(y) The projections ir{A) (As si) are dense in T(si).
(8) Each end point of T(s4) is 7r(B,) for some i.

Although the proof is given in § 7, figure 3 might convince you of the assertion
(a). For the argument in the next section, we need the following lemma.

LEMMA 2.9. IfxeA and yt£A[x], then d(x,y)>0. Hence ir'^irix)) = A[x] and
IT~\TT(A)) = A. Moreover tr{A) is isometric to an open interval.

Degenerate case 2.10. In the Condition (*), we can eliminate the assumption that
none of the components of B is a point. Then a similar construction yields a tree
T(si) which may be of infinite length. In this case, we have to change the above
statements as follows:

LEMMA 2.2'. There exists a finite set B^ consisting of one point components of B such
that

d (x, y) < oo for x, y e C — S^,

d(x,y) = <xi for xeC,ye Bx withx^y.

LEMMA 2.4'. d is a metric on T(si)-7r(Bx,) = ir(C —Boo). The quotient topology on
ir(C — Boo) is equivalent to the topology defined by d.

As the topology of T(si), we adopt the quotient topology, since d cannot be a
metric on the whole T(si). The points of v(Bx) are called points at infinity.
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FIGURE 3

THEOREM 2.8(b'). d on TT(C — B^) is^a linear metric.

3. Tree associated with Herman rings
Let / be a rational function which has Herman rings.

Definition 3.1. Let
sdo~ {components of (Herman rings - the closure of the forward orbits of critical

points)};
d' = {components off~"(A) \ A e ^ 0 , " 2 0};
B = the union of the boundaries of Herman rings;
si = {Ae d'\f"{A) separates B for all n >0}.
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LEMMA 3.2. sd0, si' and si are collections of annuli. If Aesi, then f (A) e si and
f\A-A-*f(A) is a covering map. If yeT = Y{sl), then / (y )eF . Furthermore, each
component off~\y) either belongs to F or do not intersect with any element of F,
according to whether it separates B or not.

Proof. Because of the dynamics on the Herman rings, si0 consists of annuli. It is
clear that if A is an annulus containing no orbit of critical point, then/" :f~"(A) -» A
is a covering map. Therefore f~"{A) is a disjoint union of annuli. So sd' consists
of annuli and the definition of si does make sense. The proof of the rest is easy
(cf. Lemma 1.7). •

LEMMA AND DEFINITION 3.3. The si satisfies Condition (*) with the above B. Hence,
according to § 2, we can define the tree

Tf=T(st).

This Tf is called the tree associated with Herman rings of/

Proof Note that a boundary component of a Herman ring cannot be a point, in
view of the removable singularity theorem. So it is easy to verify the Condition (*).

•
Definition 3.4. Define /,.: 7} -> 7} by

Mx) = TT°f(dn-1(x)),

where dn~'(x) is the boundary of n~1(x) in C.

LEMMA 3.5. /,. is well-defined and continuous.

Proof. We show that

any y e F does not separate f{dir~x(x)) for x e 7}.

Then it follows that n°f(dir~\x)) is a point and/,, is well-defined.
Let y, (i = 1, . . . , m) and yj (j=l,...,n) be components of f~l(y), which are

simple closed curves, such that y, separate B and yj do not. It follows from Lemma
3.2 that y,eF and yj£F. So y, cannot separate n~\x), hence dn~\x) neither. On
the other hand, for each yj, there exists a component C, of (yj)c containing B.
Every y 'eF is contained in C,, since it must separate B and does not intersect yj
by Lemma 3.2. So d(z,z') = 0, for any z,z'eCcj. Then either Tr'l(x)nCj = (f> or
CJc TT~\X). In any case, d7r~I(*)tz Cj.

Thus neither % nor yj separates dir~\x). There exists a component C off~\yc) =
(Ui Ti1-' Uj j'jY, whose closure contains dir~1(x). Since/(C) is a component of
yc, y cannot separate/(i97r"'1(^))<z/(C). The assertion is proved. •

Note that if/*(x) ^ Tr(y), then TT(C) is a neighborhood of x and as shown above,
/#(TT(C)) is a component of 7}-7r(y). It follows that/^ is continuous, since finite
intersections of components of 7}-7r(y) (yeF) form a basis of open sets by
Theorem 2.8 (y). •

THEOREM 3.6. Write T= 7}, F=fit. and d = d. Then (T, d, F) satisfies the following.
(a) (T, d) is a tree with a linear metric.
(b) F: T-* T is continuous.
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(c) There exist a finite subset Sing (T, F) of T and a function DF: T-Sing (T, F)-*
N(= the set of positive integers), which is constant on each component, such that:
if x and y are in the same component T' of T-sing(T, F), then d(F(x), F(y)) =
k-d(x,y), where k = DF\T-.

(d) There exist subarcs Iy (i = 1 , . . . , / ; j e Z/pjZ) of T such that:

int Iy are disjoint and do not contain branch points;

F(I,j) = Iu+l; and F"'= id on Iy.

(e) r = U n ,oUi J f " " ( i n t / , ) .
(f) Each end point of T is an end point of an Iy.
In fact we may take

Sing (7},/,.) = {end points, branch points of 7}}u 7r{critical points of/};

Df^ on T' = the degree of the covering/: TT~1(X)-> 7r~'(/*(x)), where x is any point
of T'n TT(U •&) (this is later proved to be well-defined);

{/;;} = {TT-(A) IA is a Herman ring of/},

where Iy inherit the cyclic order of the Herman rings, and / is the number of cycles
of Herman rings and />, the periods.

Proof. The assertions (a), (e) and (f) immediately follow from Theorem 2.8, and
(b) from Lemma 3.5. Also (d) follows from the property of Herman rings, provided
that the subscripts are suitably chosen. Before proving (c), we state the following
lemma.

LEMMA 3.7. Let R be an annulus bounded by real analytic simple closed curves y,,
y2 and g an analytic map from a neighborhood of R to C. Suppose that g has no
critical point in R, y\ = g(y,) are real analytic simple closed curves and g\y.: y,- -* y[ is
a covering of degree fe, (i = 1, 2).

Then kt = k2, g{R) is an annulus bounded by y\, and g: R->g(R) is a covering of
degree k\.

Proof. Extend g to a branched cover (or 'quasi-regular map') gx :C-»C, by glueing
along each y, the map z-» zk> on {\z\< 1}, so that in each component Rc, g, has a
unique critical point of multiplicity fcj-1 (or no critical point if kt = 1). Let d be
the degree of g,. Considering the degree and the number of critical points, we have

d>k{ and 2 (d - l )S ( fc , - l ) + (fc2-l).

Hence fc, = k2 = d.
Moreover there are homeomorphisms h, ft' of C such that

h°gl°h'(z) = zd.

Then it is easy to see that yi n y'2 = <t>, and g(R) is the annulus bounded by y\, etc.

•
Proof of Theorem 3.6(c). Fix a component V of 7}-Sing (7},/,.), which is an open
arc. Let x, y be any two points of T'n ir(U ^) a°d J the arc joining x and y. Then
J c f and R = ^ ' ( i n t / ) is an annulus bounded by y, = n~l(x) and y2 = 7r~1(y).
By the definition of Sing (7},/,.), / does not have a critical point in R, and the
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assumption of Lemma 3.7 is fulfilled. Hence, the degree of the covering/: TT~1(X)->

T"'(/*(*)) is the same as that for y. This implies that DF is well-defined and
constant on T. Let k = DF\r.

If yeF separates y, and y2, then y c f i and/(y) separates /(yi) = 7r~l(/*(*))
and/(y2)= •"•'(/*(>')), by Lemma 3.7. Conversely if ye F separates/(y,) and/(y2),
then y <=/(/?) and there exists a unique component of/ '(y) which separates y,
and y2. Thus/gives a one to one correspondence between {y e F separating y, and
y2} and {y'eF separating /(yt) and/(y2)}. (But note here that f(R) may contain
a yeF which does not separate f(R)c.)

Combining this observation with Lemma 3.2 and Lemma 1.7, we have

*),/*O0)= I m(A(/(r,),/(y2)))

= I m(f(A(7l,2)))
Aesi

= k-d(x,y),

where the definition of /4(y1? y2) is similar to that of A(z, w). By the continuity,
this also holds for all x, ye T.

Thus the proof of Theorem 3.6 is completed. •

4. Further properties of the tree
In this section, we start with a dynamical system on a tree (T, d, F) satisfying (a)-(f)
of Theorem 3.6, not a priori a tree associated to Herman rings.

Definition 4.1. We assume that Sing(T, F) denotes the smallest set satisfying (c)
and containing end points and branch points. A point of Sing (T, F) is called a
singular point and /*, satisfying (d) periodic arcs. We denote by /3(x, Y) the branch
at JC intersecting with a subset (or a point) Y, if it exists and is unique. For any x
and be3Sx,

F(x, b) = P(F(x), F(y)) for y e b sufficiently near x,

DF(x,b)= lim DF(y)
bsy-*x

are well-defined. We sometimes write them as F(b), DF(b). Note that F{b) does
not mean the image of b as a set. Periodic arcs /„ can be oriented so that / respects
the orientations. Let (T/y be the beginning of /;, and d+/,, the end. Hence <9/y =
{d+l,j,d-lij} and

PROPOSITION 4.2. F is surjective.

This immediately follows from (d) and (f).

Proposition 4.3. (i) On any periodic orbit, kt(x) = #{j\d±lii = x} are constant, (ii)
d+lii^d~lir for j,j'eZ/Piz.
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Proof, (i) This is obvious from (d). (ii) Suppose d+lij=d~lij+l for some i, j , hence
for all j e Z/ ptz. Then 7y u 7y+, u 7y+2; u • • • makes a loop in 7". This contradicts (a).

•
PROPOSITION 4.4. F has at least one fixed point. In fact if F(x0) ^ x0, F has a fixed
point in P(x0, F(x0)).

Proof. Suppose F(x0) 7s x0. Let r: T-* T' = /3(x0, F(x0)) u {x0} be a retraction such
that r\r = id and r(T — 7") = {x0}. By the Lefschetz's fixed point theorem, there
exists a fixed point Xj of r ° F; r ° F(xt) = x,. Then xt e Im r = 7*'. Since F(x0) e V,
r° F(xo) = F(x o )^x o . Hence x ^ x , , and X! = r° F(x,)e/3(x0, F(x0)). By the
definition of r, r ° F(x,) = F(x,) and F(x,) = x,. D

PROPOSITION 4.5. Suppose b e 2ft x is periodic; Fp(ft) = ft (p IS 1). (Of course Fp (x) = x.)
77ien, eif/ier x e Iyfor some i, j and b intersects int 7y, or DFp(b) > 1. Here DF"(b) =
DF"(x, ft) are defined by the chain rule DF"(x, ft) = DF"~\F{x), F(b)) • DF(x, ft)
or equivalently defined by D{F") for (T, F") which also satisfy (a)-(f).

The proof is easy. One can consider this as a corollary of the following theorem.
This theorem is useful to check that examples in § 5 satisfy (e).

THEOREM 4.6. Suppose (T, d, F) satisfies (a)-(d). 77ien the condition (e) is equivalent
to (ej) and {e'2) below:
(el) TTiere exists JV>0 such that T = U™=0 F~"{S), where S = Uy7,jU

{x | DF(x, ft) > 2 for some ft 6 33X};
(e'2) Any one-sided neighborhood of a folding point of F intersects Uij.nao F~"(int 70).

(A one-sided neighborhood of x is the intersection of a branch at x and a neighbor-
hood of x. A folding point is a point where F is not locally injective.)

Proof. If we assume (ei) and (e^), then any small arc is homeomorphically expanded
by FnN (n = 1, 2,.. .) until it intersects with U,u or folding points, hence (e) follows.

Suppose (T, d, F) satisfies (e). Immediately (e^) follows. In order to prove (ei),
it suffices (because of the compactness of T) to prove that:

for any a :[0, to]-> T, an isometry onto an arc (fo>0), there exist m>§ and T > 0
such that

(0°) Let X =dSu{xein t 5|there is a folding point y such that x = F"(j') (n>0)
and F'(y)i int S (0< i < n)}, where int S, dS denote the interior and the boundary
of S as a subset of T. Then X is finite. Take S = the minimum of the distance
between distinct points of X. Of course 5 > 0.

(1°) Define

tn = sup {t e [0, f0] | F" o a is injective on [0, t] and
F'°a(0,t]nmtS = 4> (0</<«)}.

Then /„>(„+, and tn->0 as n->oo by our assumption (e). Suppose tn=G for some
n, then there exists m(0< m < n) such that F m ° a(0, f]nint S # </> for any t. Since
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5 is a union of a finite number of arcs, it follows that Fm ° a[0, T ] C S for some
T > 0 . Thus the assertion holds.

Therefore, for the proof of the theorem, we shall derive a contradiction from the
assumption that

/„ > 0 for all n > 0.

(2°) First notice that F" ° a | t ( U i ] is an isometry. Let yn = F" ° a(tn). It is easy to
check that if /„ < rn_,, then

yn e Y = dSu{F(z)\z is a folding point}.

Since Y is finite, there exist x and be@}x such that

M = {n\yn=x and b = /3(x, F" ° a[0, *„))}

is infinite.
Fix i s M large enough so that f,<5 and that F '°a(0, ff) contains no branch

point. If j € M and /</ , then

FJ °a[0, tj]<=F'oa[0, t{],

hence

F/oa[0,/,-] = F ' o a [ r , - i , , * l ] .

(3°) Let fc = min {«| n > i, F" ° a[0, f,-] n int S ^ </>}, which exists by (e). There exists
s e (0, f,-) such that Fk ° a(s) e int S and F* ° a is locally injective at s. Let 7 be the
maximal sub-interval of [0, /J containing 5 such that Fk ° a(J)<= S and Fk ° a is
injective on 7. If tedJ and f # 0 , f,-, then either Fk ° a is not injective at t or
Fk ° a(t)edS. It follows from the definition of X that

By the definition of k and 7, Ffc ° a|y is an isometry, hence \Fk ° a ( / ) | = | / | < t, < S.
So dJ<£(Fk°ayi(X), and either OedJ or ^ e 3 / .

If 0 £ dJ, tk musr be zero. Suppose /, £ 5 / Take j £ M large enough so that ;' <y
and tj < \j\. Then

F' o a[0, tj] = F' o «[/,. - f,., ti]czFl ° a(J),

hence

F^ 1 *"" ° a[0, /,•] «= F k ° a(J) c S.

Therefore <,-+*_,• = 0. In any case, we have led to a contradiction. Thus the assertion
is proved, and this completes the proof of Theorem 4.6. D

5. Examples
Let us see some examples of trees satisfying the condition (a)-(f) in Theorem 2.8.
We restrict our attention to the case where there exists only one cycle of periodic
arcs, i.e., / = 1, so we write I} = lKj. It will be proved in [S2] that there exist rational
functions which realize these trees.

Explanation. An arrowed segment with number j ( = 0, oo, ...p), 4 , denotes a
periodic arc J,-; the number j indicates its cyclic order and the arrow its orientation.
Letters a, b, c, d , . . . denote respective segements and also their lengths for notational
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simplicity; e is specially reserved for the length of the periodic arc. A doubled (resp.
tripled) line indicates a part on which DF = 2 (resp. DF = 3). On the rest of the
tree, DF=\.

A white circle O (resp. a doubled circle ©) denotes the projection by TT of a
critical point (resp. more than two critical points) of a rational function which
realizes the tree, a denotes a fixed point.

The map F on the tree is supposed to be the simplest one which sends each
periodic arc j to j+1, respecting the orientation.

As a matter of course, it is a problem whether or not one can define such an F
consistent with the given DF as above. In fact, from the condition (c), we conclude
some relations between the lengths of segments. See Examples 3 and 4. Once the
lengths are determined, it is not so difficult to verify the conditions (a)-(f) (using
Theorem 4.6 for (e)).

Examples 1 and 2. Tx and T2 are obtained from the rational functions in Theorems
5(A) and (B) of [SI]. T, is the simplest tree with periodic arcs of period p. T2 is
isometric to [-2e,2e], and F(x) = x + 3e on [-2e, —e]\ F(x) = -2x on (-e, e);
F(x) = x-3e on [e,2e].

Example 3. Let us determine the lengths a, b, c, d. First, since the branch at a on
the right is mapped as in figure 6, we have

a = b and d = e + b + a.

Similarly, noting that DF = 2 on the segments b and c, we have

2b = c and 2c = a + e + d.

Solving these equations, we conclude that

a — b = 2e, c = 4e, d = 5e and e>0 is arbitrary.

Conversely provided these relations, it is easy to see that (T3,F) satisfies the
condition (a)-(f). Furthermore, it is shown [S2] that T3 can be realized by a rational
function of degree 3.

Example 4. For T4, as in Example 3, we have a = b and 2b = e + a + e + b + e, hence
e = 0. Therefore this is impossible. However, we can make it possible by setting
DF = 3 on the segment b, as T'4. Then a = b = 3e. T'4 is realizable by a function of
degree 5.

O = p

O = 2

p-\

FIGURE 4
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FIGURE 6

T4

O = 3 O = 3

FIGURE 7

Example 5. With appropriate lengths, T5 satisfies (a)-(f). Although it looks compli-
cated, T5 is proved to be realizable by a rational function of degree 3.

6. Generalization
We can generalize the construction of 7} in § 3, changing B and si0 in Definition
3.1 and also m(-).

Change of B. As the set B, one can take any non-empty closed set consisting of a
finite number of components, provided that f(B) c B. In this case, Theorem 2.8(f)
does not necessarily hold. If B has a one point component, then the resulting tree
might be of infinite length (see (2.10) Degenerate Case).

Especially, one may add to the original B, (super-) attractive basins, parabolic
basins, Siegel disks, (or non-repulsive periodic points) and a finite number of their
pre-images.
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FIGURE 8

Change ofsd0. We can define trees related to attractive basins, superattractive basins
and Siegel disks.

Let us consider the case of attractive basin. Near an attractive periodic point of
period p,f is conformally conjugate to z-» kz on A = {zeC||z|< 1} with 0 < | A | < 1 .

Let C be the set of points of A corresponding to the generalized orbits (i.e. forward
orbits and their pre-images) of critical points. We may assume C n {z | \z\ = |A |} 5* <f>.
Define

sA0 = {components of A - ({0} U U {* IM = If |})}-

Then it is easy to see that si0 consists of annuli and that if Ae si0, f(A)e sd0. In
this case, we have to add to B the cycle of the attractive periodic points.

In a similar manner, we can define s£0 related to superattractive basins or Siegel
disks, using conformal conjugacies to z-* zk or z -e2"lfl j on {z| \z\ < 1}, respectively,
where k is an integer >2 and 6 an irrational.

If the slo is changed as above, then Theorem 2.8(d) has to be changed as follows.
In the case of (super)attractive basin, let 70 be the projections by -n of sufficiently
small closed neighborhoods of the (super)attractive periodic points such that / # ( / s ) c

/y+i. In the case of Siegel disk, let /„ be projections by ir of the closures of Siegel
disks such that/!(.(/y) = /y+I. Then each Iy is isometric to the infinite interval [0, +oo].
Moreover, /$; on Iy is conjugate to
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in the case of attractive basin, x -* kx in the case of superattractive basin, and x-*x
in the case of Siegel disk.

It is also possible to utilize a subfamily st'o of s40 provided that M'o is /-invariant,
i.e. if Aes4'0,f(A)esi'o.

Change of m(-). Instead of the modulus m(-), one can use a weighted modulus,
that is, a function m: si -> R+ provided that if/: A, -* A2 is a covering map of degree
k for A1,A2e si, then m'(A2) = km'{Ax).

Example. Let us see an example of a tree associated with a superattractive basin. Let

where |c|>67. Then / has a superattractive fixed point 0; /(0) = 0, /'(0) = 0 and
/(oo) = 0. Critical points of/ are 0, oo and ±1. It follows from the condition on c
that /(±1) are in the same component of C-Jf as oo. Consider the tree TfSAB
associated to the superattractive basin with B = {0} u {oo}. It can be proved without
effort that

T/,SAB = R u {±0°} (isometric);
TT(0) = -oo and 77(00) = +00;

f*:x + 'ia/2-2>\x-a/2\ on R(a>0) and/J(:(±oo) = -00.

Furthermore ir(Jf) = aC, where C(<=[0,1]) is the Cantor's ternary set. It can also
be shown that Jf itself is homeomorphic to a cartesian product of aC and the unit
circle {|z| = 1} and that/|jy is conjugate to (/*|<,c)x(z-»z3) on the product.

7. 77ie proof of the statements in § 2
Proof of Lemma 2.2. Let •«#/, (iVy) be the collection of Ae si separating Bt and B,.
Since B, and Bj are disjoint connected closed sets, there exists a unique component
R of C — Bj; u B,-, such that RnBj^cj) and RnBj^ <t>. Then i? is an annulus and
every Ae JJ/,J is an annulus in R separating dR. By Lemma 1.8,

I m(A)<m(/?)<oo.
A<Es4tj

It follows from the Condition (*) that i c ( J i : j ^iy. Hence

Aest ij Afisiij

By Lemma 1.6(ii), m(A(x,y))< m(A), therefore d(x, y)<<x>. O

Proof of Lemma 2.3. It is obvious that d(x, x) = 0 and d(x, y) = d(y, x). If we A(x, z)
for Ae si, then y sits either in the component of A[»v]': containing x, in the other
component containing z or on A[w]. Accordingly weA(y,z), A(x, y) or A[y],
where A[y] = <f> if y & A. Thus

A(x,z)<zA(x,y)uA[y]uA(y,z), (1)

and from Lemma 1.6(ii),

m(A(x, z)) < m(A(x, y)) + m(A(y, z)). (2)

Summing them up for A e si, we obtain the triangle inequality. •
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LEMMA 7.1. If x and z are separated by y e F, then for yey,

Proof Suppose that y separates x and z and that y e y. If A[w] (w e A e ^ ) separates
x and y (resp. y and z), then it must be in the same component of yc as x (resp.
z) and separate x and z. Hence

A(x, y) n A(>>, z) = 4> and A(x, y) v A(y, z) c A(x, z)

Then (1) in the proof of Lemma 2.3 becomes an equality and the right-hand side
is a disjoint union. Therefore (2) also becomes an equality and the desired equality
holds. •

Proof of Lemma 2.4. In view of Lemma 2.3, it suffices to prove that:
For any e> 0 and x e C, there exists a neighborhood U of x such that d(x,y)<e

ifyeU.
If x e A for some A& si, then take

U = d>-A\{z |max {rA, e^e \ <f>A(x)\} < \z\ < min {1, e2™ | <M*)|}»-

Then the assertion holds, since A'(x, y) = 4> for y € U and A'e si, A' ^ A.
If X£\J s£ = \JA&si A, then one can choose Atesi (i = l , . . . , n ) and A; =

^ ( { ' i < |z| < '"!'}) with rAi <r[<r"<l so that

A£st-{A:} i = l

Note that xi. (Ji A[. Let 1/ be the component of C - U . A; containing x If y e U,
then Ai(x, y) c Ai - A[ and m(Aj(x, y))<-m(A;)m(A;). Therefore

In any case, the assertion is proved. •

The proof of Lemma 2.6 is left to the reader. (Use Lemmas 2.3 and 2.4.) Before
proving Theorem 2.8, we prove Lemma 2.9.

Proof of Lemma 2.9. If x e A and yi A[x], then for some e > 0,

A(x,y)c4>A-t{£|r<|f|<ree}) or <M{£|re-* < | f |< r}),

where r = \<f>A(x)\. Hence d(x, _y)> m(A(x, y))>0. It immediately follows that
I7-~1(TT(X)) = A[X] and TT~\TT{A)) = A.

If x, ye A and A' ^ A, then A'(x, y) = <£. Hence by Lemma 1.7(ii),

rf(x, y) = m(A(x, y))=^-\log\4>A(x)\-log\<i>A{y)\ I-
2TT

Thus x-*(l/27rlog |0A(x)| gives an isometry to an interval. D

Proof of Theorem 2.8. (y) It is easy to see that for any zeC there exists z'e{J si
such that d(z, z') = 0. Hence T(^) = TT(C) = TT(U ^ ) . By Lemma 2.4, -IT is con-
tinuous, so ir(U s&) = IT(U J^). Then we have ir{\J si) = T{s4).
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Proof of (a). For a simple closed curve y and a set X <= C, let "#(y, X) denote the
component of yc containing X, if it exists. We use a similar notation ^(A, X) for
an annulus A If yi and y2 are disjoint simple closed curves, let R(yt, y2) denote
the annulus bounded by yx and y2.

If X and Y are unions of some B, such that X ^ <j>, Y±<f>,Xn Y = <f> and
X u Y = B, then {X, Y} is called a partition. For a partition {X, y}, set

rf(X, Y) = {A e si | A separates X and Y},

r(X, Y) = {A[z] | /16 M(X, Y), z € A) <= T.

Let us consider a partition {X, Y} for which •stf(Ar, Y) ̂  </>. Define

C+= fl «(AA-), C = D ^(A, Y), £=C-(C+uC").

LEMMA 7.2. (i) C+, C~ are connected closed set containing X, Y, respectively. E
is an annulus.
(ii) If A£sd{X, Y), then ,4c C+ or AczC.
(iii) If yeF separates x, ye E, then yeF(X, Y).

/ (i) There exist y'n, y"n € T(X, Y) (n = 1,2,...) such that

}, («(y« Y)} are decreasing and (3)

As each C+ is an intersection of decreasing connected compact sets, it is connected.
Similarly, E is connected, (ii) and (iii) Suppose AeM-M(X, Y). Then A must
separate X or Y. We may assume that A separates X. Then Aa <g(y,X) for
yer(X, Y). Thus A^C+. Since £ is connected and E a (C+) cc Ac, y = A[z]
(z e A) cannot separate any two points of E. D

LEMMA 7.3. Fix zoeX and denote I = TT(Z0). 77ien, /or any x, y e E.

d(x,y) = \d(zo,x)-d(zo,y)\. (4)
Hence

a« isometry onto a closed interval. Furthermore, its interior and end points
correspond to int e = ir(E) and d±e = TT(8E n C*).

/Voo/ Suppose x,ye{J si(X, Y) and xe y,, j € y2, yi 5̂  -y2- By Lemma 7.2(iii), y],
y2er(X, Y), so /?(yi, y2)nB must be empty (otherwise y, and y2 give rise to
different partitions of B). Therefore, either y, separates z0 and >>, or y2 separates z0

and x. Then (4) follows from Lemma 7.1. It holds on {Js2(X, Y) by continuity, and
also on E since for any x e E there exists x' e \J si{X, Y) such that d(x, x') = 0. It
can be checked, using (3) that int e = -rr(E), a±e = v(dE n C*). D

Let {Xt, Yk}(k = l,..., K) be all the partition for which sdk = ^(Xfc, Yt ?s <̂>. (If
necessary, normalize by B, c Xk.) Of course there are only finitely many partitions,
because of the finiteness of {B,}. Denote the sets defined as above for {Xk, Yk} by
Ct,Ek, ek = ir(Ek),d

±ek.
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LEMMA 7.4. EknE, = t)> and int ek n int et = </> whenever k^l.

Proof. Suppose it ¥= I and y, y' e T(Xk, Yk). By the proof of Lemma 7.2(ii), for s = +
or —, both y and y' are contained in CJ. We may assume s = +. Then (E, u CT) n
(y u -y') = 0. Recall that £, u Cj~ is connected and contains Y,{ <= B). Hence E, u CJ
does not intersect with R(y, y'). Therefore, by (3), Ekr\Et = <f>.

It follows from (3), Lemma 2.9 and 7.1 that ir(Ek) n 7r(£,) = <£. D
Let ^ be the collection of the non-empty intersections of the form (~)k Ck

k (sk = +
or-).

LEMMA 7.5. Suppose Fe 9. Then F is connected; An F= <f> for all A&si; IT(F) is
a point; TT'X{TT(F)) = F; there is k such that dEk nF^ <f>, hence v(F) = d+ek or d~ek.

As in Lemma 7.2(i), F is proved to be connected. The proof of the rest is easy.
It follows that 9 consists of components of C — U* £*• Combining all results, it

is proved that T{M) is the union of the arcs ek (fc = 1 , . . . , K) with some of end
points d±ek identified. So this is nothing but a one-dimensional simplicial complex.
It is connected, since IT : C -* T(s£) is continuous and C is connected.

Suppose £e TT(U *&)• Then 7r~'(|) (eF) divide C into two components D, D'.
By Lemmas 2.9 and 7.1, ir(D)n TT(D') = <J>. Hence T{M)-{£) = TT(D)U TT(D') is
disconnected. Since TT(LJ •&) is dense, T(.stf) cannot contain any loop.

Thus we conclude that T(sd) is a tree, and (a) is proved.

Proof of (/3). Let L be an arc in T{s£) with end points £ £. If 77 e int Ln TT(U sd),
g and I belong to different components of T(M) -{17}. So ir~lUj) and 7r~'(£) must
belong to different components of C - w"1('?) (see the last part of the proof of (a)),
that is to say, TT '̂CT?) separates ir~l(i;) and ir~l{£). By Lemma 7.1, we have
d(€, £) = d(€, r]) + d(rf,C). It follows, as in the proof of Lemma 7.3, that this equality
holds for all 17 € L. Therefore d is a linear metric.

Proof of (S). Suppose £ is an end point of T(s£). It is easily proved that TT"1 (£) = Ck

for some k and 5 = + or - . The Cs
k contains some Bit hence f = ir(B,).

Thus Theorem 2.8 is proved. •
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